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Efficiency and robustness 

in sustainable infrastructure 

• Accept previous talks as givens 

‒ New efficiencies and instability/fragility 

‒ Needs distributed/layered/complex/active control 

 

• What could go wrong (longterm)?  

• How to fix/avoid (technical) problems. 

 

• Persistent errors/confusion in science & engineering 



Efficiency and robustness 

• Efficient use of resources 

– Less inertia and damping  instability 

• Robustness on all scales 

– Fluctuations in supply and demand 

– Component uncertainty and failure* 

– Adaptability to large changes* 

– Evolvability on long time scales* 

 

* Aspects of “plug and play” modularity 



Efficiency/instability/layers/feedback 

• Sustainable infrastructure? (e.g. smartgrids) 
• Money/finance/lobbyists/etc 
• Industrialization 
• Society/agriculture/weapons/etc 
• Bipedalism 
• Maternal care 
• Warm blood 
• Flight 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis (2011 Science) 

• All create new efficiencies but also unstable/fragile 

• Needs new distributed/layered/complex/active control 

• Persistent errors/confusion in science & engineering 

Major transitions 

in evolution 



• Nets/Grids (cyberphys) 

• Brains 

• Bugs (microbes, ants) 

• Medical physiology 

(tomorrow) 

• Lots of aerospace 

• Wildfire ecology 

• Earthquakes 

• Physics:  
– turbulence,  

– stat mech (QM?) 

• “Toy”:  
– Lego 

– clothing, fashion 

• Buildings, cities 
• Synesthesia 

 

 Case StudyI
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Efficiency/instability/layers/feedback 

• Sustainable infrastructure? (e.g. smartgrids) 
• Money/finance/lobbyists/etc 
• Industrialization 
• Society/agriculture/weapons/etc 
• Bipedalism 
• Maternal care 
• Warm blood 
• Flight 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis (2011 Science) 

• New efficiencies but also instability/fragility 

• New distributed/layered/complex/active control 

Live demo? 



costly 

fragile 

efficient 

robust 

Tradeoffs 
(swim/crawl to run/bike) 

Function= 

Locomotion  
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costly 

fragile 

efficient 

robust 

Tradeoffs 

4x 

>2x 



wasteful 

fragile 

efficient 

robust 

Universal laws  

“Universal laws” 

limit achievable 

robust efficiency.   



wasteful 

fragile 

efficient 
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Actual 

Universal laws  
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efficient 

robust Ideal 

Actual 

The risk 
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Universal laws  

and architectures 

Flexibly achieves 

what’s possible 
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Requires 

shared “OS” 



Learning 

crawl 

walk 

bike 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=xRHAdiICvFeaMM&tbnid=bFjLtUx-_mcU9M:&ved=0CAUQjRw&url=http://www.pinterest.com/pin/167829523586306034/&ei=JpjZU6vxOMLNiwL0toGoBw&bvm=bv.72185853,d.cGU&psig=AFQjCNE1Q9AWQwUtxPSLp8CMSD63yVKx2w&ust=1406855562312335


Sensory Motor 

Prefrontal 

Striatum 

Slow 

Flexible 

Learning 

Ashby & Crossley 

Slow 

Reflex 
(Fastest, 

Least 

Flexible) 

Extreme heterogeneity 



Sensory Motor 

Prefrontal 

Striatum 

Fast 

Fast 

Inflexible 

Slow 

Flexible 

Reflex 
(Fastest, 

Least 

Flexible) 

Ashby & Crossley 

Learning can 

be very slow. 



Sense 

Fast 
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Sense 

Fast 
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Slow 
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General Special 

Apps 

OS 

HW 
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Slow 

Flexible 

Fast 

Inflexible 

Architecture 

(constraints that 

deconstrain) 

General Special 

Universal laws and architectures 

(Turing) 

ideal 



Slow 

Flexible 

Fast 

Inflexible 

General Special 

NP(time) 

P(time) 

analytic 

Npspace=Pspace 

Decidable 

Computation 

(on and off-line) 



control feedback 
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Requires 
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control feedback 
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What can 

go wrong? 

Before 

exploring 

mechanisms 



Horizontal 

Bad Gene 

Transfer 
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Bad App 

Transfer 
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Bad Meme 

Transfer 

Parasites 

& 

Hijacking 

Fragility? 

Exploiting 
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architecture 

Virus 
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Meme 



Horizontal 

Bad Meme 

Transfer 

Our 

greatest 

fragility? 

Meme 

Many human 

beliefs are: 

• False 

• Unhealthy 
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efficient 
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waste 

efficient 
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robust 
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robust 
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costly 
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Function= 

Movement 
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costly 

fragile 

efficient 

robust 

hard 

harder 

A convenient cartoon 

easy 

Function= 

Movement 
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“costly” 

fragile 

“efficient” 

robust easy 

hard 

harder 

up&short 

cartoon demo 

down or long 



fragile 

robust easy 

hard 

up&short down or long 

Gravity is 

stabilizing 

Gravity is 

destabilizing 

Law #1 : Mechanics 

Law #2 : Gravity  

Universal laws? 



Efficiency/instability/layers/feedback 

• Sustainable infrastructure? (e.g. smartgrids) 
• Money/finance/lobbyists/etc 
• Industrialization 
• Society/agriculture/weapons/etc 
• Bipedalism 
• Maternal care 
• Warm blood 
• Flight 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis (2011 Science) 

• New efficiencies but also instabilities 

• New distributed/layered/complex/active control 

stabilizing 

destabilizing 



fragile 

robust 

harder 

up&short down or long 

More 

unstable 

Law #1 : Mechanics 

Law #2 : Gravity 

Law #3 : ?? 

Law #4 : ?? 



hard harder hardest! 

Easy to prove using simple models. 

What is sensed matters. 

Why? 

Why?!? 



fragile 

robust 

harder 

up&short down or long 

hardest! 

Why? 

Accident or necessity? 

Universal laws? 



Four Universal laws = 

vision 

Act 

delay 

+ Neuroscience 

Balancing 

an inverted 

pendulum 

Mechanics+ 

Gravity + 

Light + 
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Law #1 : Mechanics 

Law #2 : Gravity  
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hard harder 

Easy to prove using simple models. 

vision 

Act 

delay 

Law #3 : Light  
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Universal laws, 
art, music, Lego 
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Amplification (noise to error) 

Entropy rate 

Energy (L2) 
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 exp pt
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time 

state 

intuition 
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linear 

 exp p

Also 

exponential 

in delay! 
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Cerebellum 
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Proof? 

Easy 
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hard harder hardest! 

Easy to prove using simple models. 

What is sensed matters. 

Why? 



hard harder hardest! 

What is sensed matters. 

Unstable poles Unstable zeros 

0l l0l l
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Fragility two ways (Bode* and Zames): 

Unstable zeros 
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Vary delay? 
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Hard tradeoff 
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Same constraints: 

Mechanics+ 

Gravity+ 

Different 

consequences 
Constrained 

sensing 

unconstrained 

The nature of “laws” 
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Cortex 
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+ 

Error 
Tune gain 
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AOS = Accessory Optical system 

noise 

Act 

Delays 

everywhere 

Distributed 

control 

slowest 



Cortex 

 

eye vision 

Act 
slow 

delay 

VOR 

fast 

Object 

motion 

Head 

motion 

Cerebellum 
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Error 
Tune gain 

gain 

AOS 

noise 

Act 
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everywhere 



Efficiency/instability/layers/feedback 

• Sustainable infrastructure? (e.g. smartgrids) 

• Money/finance/lobbyists/etc 

• Industrialization 

• Society/agriculture/weapons/etc 

• Bipedalism 

• Maternal care 

• Warm blood 

• Flight 

• Mitochondria 

• Oxygen 

• Translation (ribosomes) 

• Glycolysis (2011 Science) 

Major transitions 

How universal?  Very. 



Chandra, Buzi, and Doyle 

UG biochem, math, 

control theory 

Insight 

Accessible 

Verifiable 



Glycolytic oscillations 

• Exhaustively studied 

– Extensive experiments and data 

– Detailed models and simulations 

– Great! But all just deepen the mystery 

• Perfectly illustrates “conservation law” 

• Without which? Bewilderment. 
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Law #1 : Chemistry (vs mechanics) 

Law #2 : Autocatalysis (vs gravity) 

  ( RHP p and z) 
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Localized (distributed) control 

• Localizable control: Wang, Matni, You and 
Doyle ACC ’14  

• Localized LQR control: Wang, Matni, and Doyle 
CDC’14 

 



Another extremely toy model 

• Concretely illustrate important new ideas 

• Minimal complexity otherwise 

• Familiar, intuitive circuit dynamics 

• Emphasize role of delays 

 

• Instability mechanism is artificial  

• Comparable to biological instabilities  

• … but (so far) rare in tech infrastructure 

 



• LC circuit 

• Each node = grounded capacitance 

• Each link = inductance 



System Model 

• Assuming each L and each C has unit value, the 
dynamics of the system are 

  

 

 

 

where x(t) is states of node voltage and link current, M 
is the incidence matrix of the circuit graph. 

(Will reorder for plotting later.) 

 

 



Discrete Time System Model 

• A first order (Euler) approximation is 

 

 

 

• With step = 0.2, the maximum eigenvalue of Ad is 
1.0768 

• Artificially create a very unstable system 

 

• Only biology is systematically this unstable, so far. 



Simplified diagram (2 states per node) 
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Simplified diagram (2 states per node) 

Actuated 
and sensed 
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Actuated 
and sensed 

Only 
sensed 

Simplified diagram (2 states per node) 

Actuated 
and sensed 

Only 
sensed 



Actuated 
and sensed 

Only 
sensed 

Nominally each has delay 1. 

Expensive? 
0.  Physical 
1. Actuation 

Simplified diagram (2 states per node) 



Controller 

Physical plant 



Actuated 
and sensed 

Only 
sensed 

Sense, comm/comp, act. 

Expensive? 
0.  Physical 
1. Actuation 
2. Comms speed 
3. Comp speed 
4. Sensing 
… 



Controller 

Physical plant 



Data “plane” 

Controller “plane” 

SDN/ODP 



Physical 

Data “plane” 

Cyber 

Controller “plane” 



Actuated 
and sensed 

Only 
sensed 

Sense, comm/comp, act. 
Nominally each has delay 1. 



Actuated 
and sensed 

Only 
sensed 

Expensive: 
• physical plant 
• passive stability 
• actuation 
• low delay (comms 

and comp) 

Cheap:  
• comms bandwidth  
• compute memory 
• sensing 

True for cells, nets, grids, 
brains, but not in general 



System Model 

• The discrete time system equation is 

 

 

 

• Example: 30 C, 29 L 



Open loop dynamics 

Simplified diagram 
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Controller Design 

Critical Issues 

1. Transient LQ (H2) cost: (x’x+u’u) 

2. Actuator Density 

3. Communication (vs plant) Speed 

4. Locality/Scalability (Computation) 

5. Time/space horizon  



Actuator Density 

• Standard (centralized) optimal H2 control 

• No delay (initially) 

• Defer other issues ( comm, comp, sense) 

• Objective:  min sum (x’x+u’u) 

• Actuator density = # actuators / # states 

• Trade-off: actuator density vs norm 

• Example: 30 C, 29 L 
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Actuation 
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Norm - Actuator Density (normalized) 

Opt H2 

norm 

Artificially unstable system 

sparse dense 
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 Comm speed = 0 delay 

Standard 
control 

(circa 1970) 



Opt undelay central state 

Opt undelay central ctrl 

Sparse 
actuation 

Optimal Controller 

+   Norm H2 optimal 

‒ Communication undelayed 

‒ Design/model global/huge P 

‒ Implementation local/huge P 



Color 

code? 
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Actuated 
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Only 
sensed 

Expensive? 
0.  Physical 
1. Actuation 
2. Comms speed 
3. Comp speed 
4. Sensing 
… 



Communication speed 

Versus plant speed 

Nominally delay 1. 
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Distributed (QI) Controller 

+   Norm (H2) “small”  

+   Optimal for constraints 

+ Communication delayed 

‒ Design/model global/huge P 

‒ Implementation local/huge P 
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delay 
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ctrl 

delay 
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state 

Localized Controller 

+   Norm (H2) “small”  

+   Optimal for constraints 

+ Communication delayed 

+ Design/model local/small 

+ Implementation local/small 

+ State local 

Everything is scalable. 
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For “handout” and further study 
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delay local ctrl delay local state 

AWGN in C2, L26, C29 
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This can linearly 

constrain any 

optimization 

Localized Controller 

+ Norm (H2) small 

+   Optimal for constraints 

+ Communication is delayed 

+ Design/model local/small 

+ Implementation local/small 

+ State local 



Localized Controller 

+ Norm (H2) small 

+   Optimal for constraints 

+ Design/model is local 

+ Implementation is local 

+ State stays local 

 

- Bandwidth is   

? Output feedback? 

?  Approximately local? 

? Layering? 

? Nonlinear, MPC, etc? 

? Comms codesign? 
See also Javad’s new relaxations 

Mostly good 
news, but 

incomplete 



Extensions 

• Scalable optimal control 

– Localizable control: Y.-S. Wang, N. Matni, S. You 
and J. C. Doyle ACC ’14 

– Localized LQR control: Y.-S. Wang, N. Matni, and J. 
C. Doyle CDC’14 

– Output feedback progress 

• Dealing with varying-delays (jitter) 

– Two player LQR with varying delays: N. Matni and 
J. C. Doyle CDC’ 13, N. Matni, A. Lamperski and J 
C. Doyle IFAC ‘14 

 

 



More Nikolai Matni 

• Distributed/scalable system identification 
– Low-rank + Low-order decompositions: N. Matni and 

A. Rantzer, CDC’ 14 
 

• Structured Robustness 
– Distributed Controllers Satisfying an H∞ norm bound: 

N. Matni CDC ‘14 

 
• Regularization for Design 

– Topology/interconnection design: N. Matni, CDC ‘13 
(best student paper), TCNS ’14 

– More broadly (including actuator/sensor placement): 
N. Matni and V. Chandrasekaran, CDC ’14 

 
 
 
 



More Extensions/Apps 
• Apps: neuro, smartgrid, CPS, cells 

• IMC/RHC, etc (all of centralized control theory) 

• Cyber theory: Delay jitter (uncertainty) 

• Cyber: Comms co-design  (CDC student prize paper) 

• Physical: Robustness (unmodeled dynamics, noise) 

• Cyber-phys: System ID, ML, adaptive 

• SDN (Software defined nets, OpenDaylight) 

 

• Revisit “layering as optimization”? 

• Poset causality (streamlining)? 

• Quantization and network coding? 



Controller 

Physical plant 

Revisit layering as optimization decomposition 
Chiang, Low, Calderbank, Doyle, 2007 
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Control over limited channels (Martins et al) 
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Memory 

Memory is cheap, reusable, powerful. 

Time is not. 
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Speed  
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Actuation 

Critical Tradeoffs 

• Cheap: memory, bandwidth, sensors 

• Not : time (1/speed), actuators 
•   Brains/bodies, cells, CyberPhySys, … 
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Critical Tradeoffs 

All costs are ultimately “physical.” 
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Robust vision w/motion 

• Object motion 
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Experiment 
• Motion/vision control without blurring 

• Which is easier and faster? 

Robust vision with 

• Hand motion 

• Head motion 
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• is simulation 
• requiring “internal model” 
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Bacterial chemotaxis 

• Internal model necessary for robust chemotaxis 

• Reality is 3d, but… 

• Internal model virtual and 1d 
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